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Abstract

We have proposed a new semiparametric approach for inferring the structure of the

regression function of a multivariate response Y on a multivariate covariateX . Our approach

is partly motivated by the scienti�c needs for analyzing the common dynamic structure of

nonlinear multivariate time series. The fundamental problem of developing eÆcient methods

for exploring the functional form of the regression function of Y on X is very challenging

owing to the curse of dimensionality which is further exacerbated by nonlinearity.

Here, we proposed a new model, the SemiPArametric Reduced-rank Regression (SPARR)

model, for mitigating the curse of dimensionality by adapting the reduced-rank linear regres-

sion technique. The basic idea is to assume that the conditional mean function of Y given

X depends on a small number of indices, each of which is a linear combination of X . More-

over, the link function linking the conditional mean of Y to the indices consists of linear

combinations of a few generally nonlinear functions of the indices to be estimated nonpara-

metrically. An alternative characterization of the SPARR model is that Y \loads" linearly

on some nonlinear principal components which depend on some indices of X ; the loading

pattern may then facilitate an approach to classify the common regression structure among

the components of Y . Moreover, the SPARR models provides a framework to study nonlinear

co-integration relationships for multivariate time series.

We have proposed an estimation scheme for the SPARRmodel and derived, under suitable

regularity conditions, the large-sample properties of the estimator for both the parametric

and the nonparametric part of the model. We illustrated the new approach with the U.S.

hog data and a modern panel of the Canada lynx data.
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1 Introduction

If the underlying data generating mechanism is well understood, one may carry out a substantive

modeling of the data via some parametric model. However, more often than not, the underlying

data mechanism is poorly understood. In the later case, it is pertinent to proceed with non-

parametric modeling of the data. For high-dimensional data, directly adopting a nonparametric

approach may su�er from the \curse of dimensionality". Thus many techniques have been

proposed in the literature to overcome this problem, e.g., generalized additive model (Hastie

and Tibshirani, 1990), projection pursuit regression (Friedman and Stuetzle, 1981), sliced inverse

regression (Li, 1992), and partially linear single-index regression (Carroll et al., 1997; Xia et al.,

1999).

Li and Chan (2001) adapt the reduced-rank linear regression technique (Reinsel and Velu,

1998) to develop parsimonious parametric nonlinear models for multivariate time series data.

The reduced-rank method (Izenman, 1980; Reinsel and Velu, 1998) is a dimension reduction tech-

nique which \replaces" the covariate, say X, by some low-dimensional \indices" BX. Classical

reduced-rank linear regression assumes a linear link function between the multivariate response

and the indices. Here we generalize this basic idea by allowing for a general function relating the

\indices" to the multivariate response. Speci�cally, we assume that the multivariate response

depends linearly on a set of possibly nonlinear functionals of some indices; these functionals

are modeled nonparametrically. This new approach generalizes the approach taken by Li and

Chan (2001) where the functionals are speci�ed as piecewise-linear. The multivariate response

may consist of annual measurements taken over a number of sites; e.g., Stenseth et al. (1999)

studied the spatial variations in the nonlinear dynamics of two panels of lynx data collected

over Canada. By studying the pattern of how the multivariate response loads on the nonlinear

functionals of the indices, the new model proposed here facilitates a semiparametric approach to

study the spatial variations in the dynamics of a panel of time series. However, the new model

may also be useful for modeling independent data.

The new model di�ers from the generalized partially linear single-index model (GPLSIM)
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(Carroll et al., 1997) in that their model assumes single-index and univariate response. One

advantage for the single-index model is that the predictor is one-dimensional so that it does

not su�er from the curse of dimensionality. Here we consider vector indices (the dimension of

which will be called the rank of the model). In other words, the new model is appropriate

if it is thought that the multivariate responses depend on the covariates through some linear

combinations of the covariates.

In x2, we describe the new semiparametric model and an estimation procedure of the model;

Appendix A contains some useful formulas for implementing the estimation procedure. The

limiting distributions of the parametric and the nonparametric parts of the model are derived in

x3. Some simulation studies on the empirical performance of the proposed estimation method

are reported in x4. Illustrations of the new model with the Canada lynx data and the U.S. hog

data are given x5. All proofs are deferred to Appendices B and C.

2 The Model and an Estimation Procedure

Let Yt and Xt be m and n-dimensional random vectors, both of which are assumed to have

been standardized. The SemiPArametric Reduced-rank Regression (SPARR) model is de�ned

as follows:

Yt = Cf(BXt) + �t; t = 1; � � � ; T (1)

where C is an unknown m� r1 matrix and B an unknown r2 � n matrix; we refer to r1 and r2

as the ranks of the model. The unknown (link) function f maps from Rr2 to Rr1 . Note that the

covariate Xt may contain lagged values of Yt.

The SPARR model is a rather general but fairly interpretable model. Let Zt = f(BXt)

which can be interpreted as some nonlinear factor process. Then (1) is equivalent to Yt =

CZt + �t, which bears resemblance to a principal-component regression model. The matrix

C is not unique because the model is unaltered if we post-multiply C by some non-singular

matrix and pre-multiply Zt by the inverse of the same matrix. A simple pattern may, however,

emerge upon suitably rotating C, which may facilitate the interpretation of the (nonlinear)

principal-component process Zt; see x5. The nonlinear principal-component process depends

on the covariates X through the lower-dimensional indices BX, with f() providing a 
exible

nonparametric link between the indices and the principal-component process.

In general, model (1) is not identi�able: Let P and Q be two non-singular matrices of
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appropriate dimensions. Consider Yt = CPP�1f(QQ�1(BXt)). By setting ~C = CP , ~f(�) =
P�1f(Q(�)) and ~B = Q�1B, we obtain another set of parameters indexing the same model.

To ensure that model (1) is identi�able, we need to impose r21 constraints on C or f , and r22

constraints on f or B. One natural set of constraints is to require that after suitable permutation

of the components in Y andX, the leading sub-square matrices of C and B are identity matrices,

that is, C = (I; C�T )T , B = (I;B�), where C�T and B� have (m � r1) � r1 and r2 � (n � r2)

parameters, respectively; the superscript T denotes the transpose. We shall henceforth adopt

this parameterization of the SPARR model, unless stated otherwise. In practice, we can �rst �t a

model with the above convenient parameterization, and then rotate the estimates of B and C for

facilitating the interpretation of the �tted model. Alternatively, the responses may be classi�ed

in terms of their dynamics by �rst rotating C so that the principal-component process Zt has

uncorrelated components of unit variance, followed by applying a cluster analysis to the rotated

C with the rows as the cases and the columns as variables. The idea is that each component series

of the response variable is a linear combination of the principal-component process, and hence

the Euclidean distance between any two rows of C measures the divergence of the dynamics of

the two corresponding components of Y . Thus, the similarity in the underlying dynamics of the

components of Y can be empirically explored by, e.g., a cluster analysis of the rotated C.

The SPARR model generalizes a number of existing parametric, nonparametric and semi-

parametric models including the Reduced-Rank Regression Model (Reinsel and Velu, 1998), the

additive model (Hastie and Tibshirani, 1990), the index model (Li, 1992), partially linear model

(Carroll et al., 1997; Xia et al., 1999) and projection pursuit (Friedman and Stuetzle, 1981).

We now consider the estimation of a SPARR model. Were the parameters (C;B) known,

there are several approaches for estimating f(�), e.g., local polynomial (Fan and Gijbels, 1996)

and spline smoothing (Eubank, 1988). Here we adopt the local polynomial method (of degree

1, for simplicity), owing to its generally good performance in terms of bias and variance, its

ability to adapt to various types of covariate design, and absence of boundary e�ects; see Fan

and Gijbels (1996) for details. The last advantage is especially important for high dimensional

time series data.

First, we assume that the ranks of C and B are known. Let Kh(�) be a kernel function with

h > 0 as the bandwidth, e.g., Kh(�) equals the pdf of the normal distribution with covariance

matrix equals hI; I is the identity matrix. We propose to estimate the model by minimizing the
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following cross-validatory weighted least square criterion function (the notation jj � jj denotes the
L2-norm):

L(C;B;A0t; A1t; t = 1; � � � ; T; h)

=
X
t

X
i6=t

jjYi �C[A0t +A1tB(Xi �Xt)]jj2Kh[B(Xi �Xt)] (2)

where A0t are r1�1 vectors and A1t are r1�r2 matrices. The arguments minimizing L(C;B;A0t;

A1t; t = 1; � � � ; T; h) yield the estimators Ĉ; B̂; Â0t; Â1t; t = 1; � � � ; T , where Â0t estimates

f(BXt) and Â1t estimates the �rst derivative matrix of f(�) evaluated at BXt; ĥ is the bandwidth

estimate.

This objective function can be motivated as follows. For a smooth function f(�), it can
be locally approximated by a tangent plane, the e�ective size of the neighborhood over which

the approximation is applied is controlled by the bandwidth of the kernel; the bandwidth is

determined by cross-validation. Speci�cally, for a given x = Xt, we model the data around x by

Yi = C[A0t +A1tB(Xi �Xt)] + error (3)

where A0t and A1t depend on Xt. The As are then estimated by minimizing the cross-validatory

weighted sum of squares de�ned with the kernel function K:

X
i6=t

kYi � C[A0t +A1tB(Xi �Xt)]k2 �Kh[B(Xi �Xt)]: (4)

It is desirable to estimate B;C and the As by simultaneously minimizing the preceding local

least squares for all observations. A more tractable requirement is to minimize the sum of (4)

over all t, which leads to the overall objective function de�ned by (2). Strictly speaking, the

minimization of the objective function (2) only yields estimates of f(�) at BX's. However, given

Ĉ; B̂ and ĥ, for any u, f(u) can be estimated by Â0 which minimizes

X
i

jjYi � Ĉ[A0 +A1(B̂Xi � u]jj2K
ĥ
(B̂Xi � u)

For the case of unknown ranks with a known bound, we can estimate the ranks by minimizing

the arguments of the criterion function

L(r1; r2) =
X
t

kYt � Ĉf̂(B̂Xt)k2=
X
t

kYtk2 (5)

over a �nite grid of r1 and r2, where f̂ ; B̂ and Ĉ are estimated by minimizing the objective

function (2) with the ranks of C and B set as r1 and r2 respectively. L(�; �) equals the fraction
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of unexplained total variances. (Recall that the Y 's are standardized.) See x4 for numerical

evidence suggesting the consistency of this rank determination procedure.

For �xed ranks and bandwidth, we outline below an iterative procedure for minimizing the

objective function de�ned by (2), with further elaboration including useful formulas given in

Appendix A.

Step 0: Fit two reduced-rank regressions Yt = C0BXt + �t and Yt = CB0Xt + �t respectively

of rank r1 and r2 to obtain initial estimates Ĉ(0) = Ĉ0 and B̂
(0) = B̂0. The dimensions of

C0 and B0 are m� r1 and r2 � n respectively.

Step 1: Find Â0t and Â1t by minimizing the inner sum of the objective function in (2) with

respect to A0t and A1t. Denote these estimators by Â
(k)
0t and Â

(k)
1t , where k is the iteration

number.

Step 2: Update B by minimizing the objective function

P
t

P
i6=t jjYi � Ĉ(k�1)(Â

(k)
0t + Â

(k)
1t B(Xi �Xt))jj2Kh(B̂

(k�1)(Xi �Xt)):

Let the minimizer be B̂(k). Then we normalize B̂(k) by transforming B̂(k) to the form

(I; B̂�) after permuting the components of X if necessary, where I is the r2 � r2 identity

matrix and B̂� is an r2 � (n � r2) matrix. Note that B appearing in the kernel function

is �xed at the value from the preceding iterate, lest the minimization problem becomes

intractable. It can shown by adapting the proof of (B.17) in Appendix B that the sepa-

rate updating of the two occurrences of B is asymptotically equivalent to simultaneously

updating both occurrences of B in the preceding loss function. The normalization of B̂ is

implemented via the pivoting technique used in Gauss-Jordan elimination method (Press

et al., 1992).

Step 3: Update C by minimizing the criterion

P
t

P
i6=t jjYi � C(Â

(k)
0t + Â

(k)
1t B̂

(k)(Xi �Xt)jj2Kh(B̂
(k)(Xi �Xt)):

Let the minimizer be Ĉ(k). Then we normalize Ĉ(k) by transforming Ĉ(k) to the form

(I; Ĉ�T )T after permuting the components of Y if necessary, where I is an r1� r1 identity
matrix and C� is an (m� r1)� r1 matrix.

Step 4: Repeat Steps 1 to 3 until the objective function converges.
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3 Asymptotic Properties of the Estimator

We �rst derive the asymptotic distribution for f̂ (and f̂ 0) with the parameters B and C

assumed known. Indeed, the proof shows that the same result applies if B and C are known up

to an error of order opf(Thr2)�1=2 + h2g. The latter convergence rate holds if B̂ and Ĉ di�er

from the true values by OP (1=
p
T ) and Thr2+4 = O(1). It is shown that f̂ is asymptotically

normal with a bias of order h2 and the rate of convergence being OP f(Thr2)�1=2g. Based on this
result, the optimal bandwidth according to the mean integrated squared error (MISE) criterion

is of the order O(T�1=(r2+4)) where r2 is the rank of B. Then we show that if B̂ and Ĉ have

convergence rate of OP (T
�1=2), then under suitable conditions, B̂ and Ĉ are asymptotically

normal. In summary, under some suitable conditions, the bandwidth can be chosen to ensure

both the asymptotic normality of B̂ and Ĉ and the (Thr2)�1=2 convergence rate of f̂ , at the

expense of under-smoothing f̂ . That is, the bandwidth is of smaller order compared to the rate

O(T�1=(r2+4)), the optimal order for estimating f according to the MISE criterion.

Initially, we consider the independent case for ease of exposition, and show at the end of the

section how to extend the results to the case of dependent variables with suitable mixing rates.

The proofs in Appendix B makes use of some techniques in Carroll et al. (1997).

3.1 Asymptotic Distribution of the Nonparametric part

Let g(�) = g(�;B) be the marginal density of U = BX. Denote by C0; B0 and f0 the true

parameters and the true function, respectively. Also, let U0 = B0X and g0(�) = g(�;B0) be the

pdf of U0. De�ne the r2 � r2 matrices k2, �2, scalar �0, r1 � 1 vector k2;f0;h and m�m matrix

�(u) by the following formulas:

k2 =

Z
wwTK(w)dw; (6)

�0 =

Z
K2(w)dw; (7)

�2 =

Z
wwTK2(w)dw; (8)

k2;f0;h(u) = h2
Z
(Ir1 
 wT )f 000 (u)wK(w)dw; (9)

�(u) = Cov(Y jU0 = u): (10)

where w denotes an r2-dimensional vector and the integrals are over R
r2 . The (r1r2)�r2 matrix

f 000 (u) consists of the second derivatives of f0 (see (B.7) for the de�nition). Because of the
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identi�cation conditions, we require C and B, up to permutations of X and Y , to be of the form

C =

0
@ I

C�

1
A ; and B = (I;B�): (11)

Condition 1:

(i) The matrix CT
0 C0 is positive de�nite.

(ii) The marginal density of B0X is positive and continuous at the point u.

(iii) The function f0(�) and its second derivatives are bounded and uniformly Lipschitz contin-

uous; i.e., for some D, jjf 000 (u)� f 000 (v)jj � Djju� vjj for all u and v, where C is a positive

number.

(iv) The matrices �0C
T
0 �(u)C0 and �2
CT

0 �(u)C0 are �nite and positive de�nite at u. Denote

�fi = �fi(u) = f0(u) + f 00(u)(Ui � u) and V1 =
p
hX�

1q1(
�f1; Y1)Kh(U1 � u), where

X�

1 =

0
@ Ir1�

U1�u
h

�
 Ir1

1
A ;

and q1(x; y) = 2CT (y � Cx). Assume E(Vi1Vj1Vl1Vm1) < 1 for all i; j; l; and m, where

Vi1 is the ith element of the V1.

(v) The kernel K is a non-degenerate symmetric density function with bounded �rst derivative

and bounded support.

Condition 1(i) ensures the validity of (11) and Condition 1(v) can be relaxed at the expense

of more complex conditions.

Theorem 3.1 Assume that fYi;Xi; i = 1; 2; � � � ; Tg are i.i.d. random vectors, and the band-

width h satis�es the conditions that as T ! 1; h ! 0; Thr2 ! 1; Thr2+4 = O(1). Under

Condition 1, as T !1,

(Thr2)1=2

0
@
2
4 f̂(u)� f0(u)

hfvec[f̂ 0(u)� f 00(u)]g

3
5� 1

2

2
4 k2;f0;h(u)

0

3
5
1
A (12)

is asymptotically normal with mean zero and the block diagonal covariance matrix

�g0(u) �
0
@ �11 0

0 �22

1
A (13)
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where

�11 = �0(C
T
0 C0)

�1CT
0 �(u)C0(C

T
0 C0)

�1=g0(u)

�22 = (k�12 �2k
�1
2 )
 ((CT

0 C0)
�1(CT

0 �(u)C0)(C
T
0 C0)

�1)=g0(u):

Followings are several remarks which aim to clarify the use of the preceding theorem.

1. Note that if h = O(T�1=r) with r2 < r � r2 + 4, then the bandwidth conditions of

Theorem 3.1 are satis�ed.

2. Theorem 3.1 indicates that the local polynomial �t for the jth component of f0(u) has

the squared asymptotic bias and covariance matrix respectively as:

squared bias � k22;f0;h;j(u)=4; (14)

covariance matrix � 1

Thr2
�f0;j;j(u) (15)

The optimal bandwidth for estimating the fj;0(u) can be determined by minimizing the asymp-

totic mean integrated square error (AMISE), to be de�ned below. For a given function !(�) with
compact support, the AMISE with weight g0(�)w(�) equals, up to a negligible term,

AMISE =

Z
E[

mX
j=1

(f̂j(u)� fj;0(u))
2]g0(u)w(u)du

� 1

4

mX
j=1

Z
k22;f0;h;jg0(u)w(u)du +

mX
j=1

1

Thr2

Z
�f0;j;j(u)g0(u)w(u)du

=
h4

4

Z mX
j=1

�Z
(eTj 
 wT )f 000 (u)wk(w)dw

�2
g(u)w(u)du

+
1

Thr2
�0

mX
j=1

eTj (C
T
0 C0)

�1CT
0

Z
�(u)w(u)duC0(C

T
0 C0)

�1ej :

where ej denote the unit column vector with 1 in the jth position. Consequently, the optimal

bandwidth minimizing the AMISE is OP (T
�1=(r2+4)); speci�cally

hopt = T�1=(r2+4)

2
64r2�0

P
j e

T
j (C

T
0 C0)

�1CT
0

R
�(u)w(u)duC0(C

T
0 C0)

�1ejR P
j

hR
(eTj 
 wT )f 000 (u)wk(w)dw

i2
g0(u)w(u)du

3
75
1=(r2+4)

:

3.2 Asymptotic Distribution of the Parametric Part

We will assume that vec(B̂�) and vec(Ĉ�) are within some T�1=2-neighborhood of respectively

vec(B�
0) and vec(C�0 ), i.e., vec(B̂

� � B�
0) = Op(T

�1=2) and vec(Ĉ� � C�0 ) = Op(T
�1=2). Let
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�t = Yt � C0f0(B0Xt) and U0 = B0X. Denote by A�1 the inverse of a square matrix A. The

following conditions will be needed below.

Condition 2:

(i) The function f 000 (�) is continuous in u 2 D, a compact set, which is the support of the

random variable U0.

(ii) The density of U0 has continuous second derivatives on the set D.

(iii) The conditional density of Ut = B0Xt given Yt exists and is uniformly bounded.

(iv) All moments of the error �t exists, i.e., E(j�jk) <1 for k � 0.

(v) The matrix Q de�ned in Theorem 3.2 is invertible.

Again, these conditions can be relaxed at the expense of more complex conditions.

Theorem 3.2 Let the coeÆcient matrices B̂�
and Ĉ� be the estimators satisfying the normal-

ization conditions (11). Assume Conditions 1 and 2 hold and Th4 ! 0; lnT=(Thr2) ! 0 and

T 1�Æhr2 !1 for some arbitrary but �xed Æ > 0. Then, as T !1,

T 1=2

0
@ vec(B̂� �B�

0)

vec(Ĉ� � C�0)

1
A D�! N(0; Q�1P (Q�1)T ) (16)

where, by an abuse of notation, X is partitioned as

0
@ X1

X2

1
A with X1 being of dimensional r2

and correspond to the components of X whose coeÆcients in the indices are �xed according to

the constraint (11); Xt is similarly partitioned as

0
@ X1t

X2t

1
A;

P = Varf[g0(U)�Kh(0)][� �E(�jU)C0(C
T
0 C0)

�1CT
0 ]�g;

� =

0
@ (X2 
 Ir2)f

0T
0 (B0X)CT

0

0r1(m�r1)�r1 ; f0(B0X)
 Im�r1

1
A ;

Q1 = E[g(U)�C0f
0

0(U)(X
T
2 
 Ir2)]�E[g(U)�C0f

0

0(U)E(X
T
2 
 Ir2 jU)]

�Kh(0)E[�C0f
0
0(U)(X

T
2 
 Ir2)] +Kh(0)E[�C0f

0

0(U)E(X
T
2 
 Ir2 jU)];

Q2 = E

2
4g(U)�

0
@ 0r1�r1(m�r1)

fT0 (U)
 Im�r1

1
A
3
5�E

2
4g(U)�C0(C

T
0 C0)

�1CT
0

0
@ 0r1�r1(m�r1)

fT0 (U)
 Im�r1

1
A
3
5

10



+Kh(0)E

2
4�C0(C

T
0 C0)

�1CT
0

0
@ 0r1�r1(m�r1)

fT0 (U)
 Im�r1

1
A
3
5

�Kh(0)E

2
4�

0
@ 0r1�r1(m�r1)

fT0 (U)
 Im�r1

1
A
3
5 ;

Q = (Q1; Q2):

Remark: The condition T 1�Æhr2 ! 1 for some arbitrary but �xed Æ > 0 implies the

validity of (4.5) in Masry (1996) which is required by Lemma 1 in Appendix C.

Note that if h = O(T�1=r) with 4 > r � r2, then the bandwidth condition in Theorem 3.2

holds. In particular, the asymptotic normality result for the parameter estimates obtains only

for r2 � 3. It is of interest to further investigate the limiting distribution for dimensions higher

than 3.

We now consider how to relax the i.i.d. assumption. Let Fb
a be the �-algebra of events

generated by the random variables fYt;Xt; a � t � bg and L2(F b
a) denote the collection of

all second-order stationary random variables which are Fb
a-measurable. The stationary process

fYt;Xtg is strongly mixing (Rosenblatt, 1956) if

sup
A2F0

�1

B2F1
k

jP (A \B)� P (A)P (B)j = �(k)! 0 as k !1:

The coeÆcients �(k) are known as the strong mixing coeÆcients.

Condition 3:

(i) jgX1 ;Xl+1
(u; v; l)�gX1

(u)gXl+1
(v)j < A1 <1 for all l � 1 where gX1

(u) and gX1;Xl+1
(u; v; l)

denote, respectively, the probability density of B0X1 and of (B0X1; B0Xl+1).

(ii) The process fYi;Xig is strongly mixing with
P

1

j=1 j
a[�(j)]1�2=v <1 for some v > 2 and

a > 1� 2=v.

(iii) The conditional density fUtjYt(ujy) of Ut given Yt exists and is bounded, i.e., fUtjYt(ujy) �
C1 <1 for some C1.

(iv) The conditional density f(Ut;Ut+l)j(Yt;Yt+l) of (Ut; Ut+l) given (Yt; Yt+l) exists and is bounded,

i.e., there exists C2 such that, for all l � 1,

f(Ut;Ut+l)j(Yt;Yt+l)((u; v)j(y1; y2)) � C2 <1:
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Theorem 3.1 continues to hold in the dependent case if we assume Condition 3 in addition to

the conditions in Theorem 3.1. The proof of Theorem 3.1 has to be modi�ed as follows. Replace

E(WT ) by

ET =
hr2p
Thr2

TX
i=1

X�
i E[q1(

�fi; Yi)jUi]

so that WT � ET is the sum of a martingale di�erence sequence, and that (B.13) continues to

hold under Condition 3. Similarly Theorem 3.2 continues to hold if we assume that in addition

to the conditions in Theorem 3.2, Condition 3 holds.

4 Simulation Studies

We have experimented with three di�erent models to check the empirical performance of the

estimation method introduced in x2. To save space, we report below one typical case; see Li

(2000) for further results. Consider the following model:

0
BBB@

Y1t

Y2t

Y3t

1
CCCA = C

0
@ sin

�
�(b1Xt�a)

(b�a)

�
� :6 sin(�

p
3b2Xt)

2b2Xt

1
A+

0
BBB@

�1t

�2t

�3t

1
CCCA (17)

where

C =

0
BBB@

c11 c12

c21 c22

c31 c32

1
CCCA =

0
BBB@

1 1

1 0

1 0

1
CCCA ;

B =

0
@ b1

b2

1
A =

0
@ b11 b12 b13

b21 b22 b23

1
A =

0
@ 1 1 1

1 0 0

1
A :

The error vectors are iid N (0; :01Im). The explanatory variables Xt are trivariate with in-

dependent uniform (0,1/
p
3) components. The constants a =

p
3=2 � 1:645=

p
12 and b =

p
3=2 + 1:645=

p
12 are chosen to ensure that the design is relatively thick in the tails (Carroll
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et al., 1997). Upon normalization, the true C;B and f become

C� =

0
BBB@

1 0

0 1

0 1

1
CCCA ; B� =

0
@ 1 0 0

0 1 1

1
A and

f�(z�) = f((z�1 ; z
�

2)
0) =

0
@ sin

�
�(z�

1
+z�

2
�a)

(b�a)

�
� :6 sin(�

p
3z�1) + 2z�1

sin
�
�(z�

1
+z�

2
�a)

(b�a)

�
� :6 sin(�

p
3z�1)

1
A

Data of sample size 200 were simulated from this model, and the number of replications is

100. We use Gaussian kernel in this and the next section. The sample mean and standard devia-

tion of (ĉ31; ĉ32; b̂13; b̂23) are (0.007,0.987,0.002,0.996) and (0.013,0.025,0.023,0.025), respectively.

Boxplots of these estimated values are shown in Figure 1(a). See Figure 1(b) for a comparison

of the true function and a function estimate from a single replicate, as viewed from three angles.

Based on Theorem 3.2, We have also constructed nominal 95% (individual) con�dence intervals

of c31; c32; b13 and b23. The empirical coverage rates of these con�dence intervals are respectively

94; 94; 91 and 90 out of 100 replications. This con�rms the validity of the results in Theorem

3.2.

Table 1 reports the frequencies of the ranks which minimize the loss function de�ned by (5).

The frequency of correct selection generally increases with the sample size, suggesting that the

method is consistent.

5 Two Applications

5.1 U.S. Hog Data

The U.S. hog data have been previously analyzed by several authors, including Quenouille

(1968), Box and Tiao (1977) and Velu et al. (1986). The hog data consist of annual observations

from 1867 to 1948 on �ve variables, hog supply (Y1t), hog price (Y2t), corn price (Y3t), corn supply

(Y4t) and farm wages (Y5t); see Figure 3. These measurements were logarithmically transformed

and linearly coded by Quenouille and, following Box and Tiao, the wage rate and hog price time

series were shifted backward by one period. We denote the standardized transformed 5-variate

time series as Yt.

We �rst brie
y summarize some pertinent results regarding the reduced-rank vector autore-

gressive model of the hog data; see Velu et al. (1986). Likelihood ratio tests for the vector au-

toregressive (VAR) order suggest an VAR(2) model for the hog data: Yt = �1Yt�1+�2Yt�2+�t.

13



The determinant of the residual covariance matrix equals 6:33�10�16 with 50 d.f., with many el-
ements of the covariance matrices being insigni�cant. Likelihood ratio tests for the rank suggest

a rank-3 VAR(2) model for the hog data.

Henceforth in this example, Xt consists of the �rst two lags of Yt. Lagged regression plots

(Figures 2) illustrate some nonlinear patterns in the hog-supply and hog-price series. Here, we

illustrate the SPARR model with the hog data; see Li (2000) for a more comprehensive analysis.

Using the criterion function de�ned by (5), the ranks of the SPARR model are found to be

r1 = 2 and r2 = 1 with the bandwidth estimated to be 0.1; see Table 2. The SPARR model

explains 85.6% of the total variance of Y , as compared to 86.3% and 84.9% for the VAR(2)

model and reduced rank VAR(2) model respectively.

An important use of the SPARR model is to classify the response variables in terms of their

nonlinear dynamics. From eyeball inspection of Figure 3, the �ve series appear to move together.

Interestingly, this phenomenon can be explored as follows. Below is Ĉ from the �tted SPARR

model with r1 = 2; r2 = 1 (after varimax rotation):

C =

2
66666666666666666666666664

0:739 0:366

(0:064) (0:096)

0:314 0:921

(0:055) (0:052)

�0:032 1:000

(NA) (NA)

1:000 0:032

(NA) (NA)

0:442 0:835

(0:045) (0:054)

3
77777777777777777777777775

:

Standard errors, enclosed in parentheses, are computed according to the results stated in The-

orem 3.2. However, the hog data violate the strong mixing condition required by Theorem 3.2;

hence, the validity of these standard errors requires further investigation. The four missing

standard errors, denoted as NA, arise because they correspond to the parameters subject to

the normalization constraint. The residuals as shown in Figure 4 appear to be stationary. The

time series plot of f1 (Figure 5(a)) resembles that of corn supply while the time series plot of

f2 resembles that of corn price, as can also be inferred from Ĉ. Figure 5(b) suggests that fi

14



are approximately piecewise linear functions of bx with the threshold at zero. (Note that B is

written as b as it is a row vector.) Because b̂Xt is generally negative before 1907 and positive

afterward, this suggests that the data may have di�erent dynamics before and after 1907. In

addition,

b̂ =

2
4 1:00 0:104 �0:0979 �0:174 1:97 0:0975 0:440 0:116 0:0132 �1:840)
(NA) (0:157) (0:0795) (0:0816) (0:520) (0:110) (0:139) (0:101) (0:155) (0:434)

3
5

so that the index variable is essentially determined by the �rst lag of hog supply (Y1;t�1), the

second lag of hog price (Y1;t�2) and the annual change of the (log) farm wages (Y5;t�1 � Y5;t�2).
The preceding analysis of the SPARRmodel can be re-cast in terms of nonlinear co-integration.

Let I(0) denote a stationary process. Treating the stochastic errors of the SPARR model as

exactly stationary, we can, from the estimated C matrix, write

Y4t = f1(bXt) + I(0)

Y3t = f2(bXt) + I(0):

Let Zt = (Y1t; Y2t; Y5t)
T and Wt = (Y4t; Y3t)

T . Then

Zt =

0
BBB@

c11 c12

c21 c22

c51 c52

1
CCCA
0
@ f1(bXt)

f2(bXt)

1
A+ I(0)

=

0
BBB@

c11 c12

c21 c22

c51 c52

1
CCCA
0
@ Y4t + I(0)

Y3t + I(0)

1
A+ I(0)

=

0
BBB@

c11 c12

c21 c22

c51 c52

1
CCCA
0
@ Y4t

Y3t

1
A+ I(0);

� C�

0
@ Y4t

Y3t

1
A+ I(0);

or Zt = C�Wt + I(0) with Wt = (f1(bXt); f2(bXt))
T + I(0). This implies a nonlinear co-

integration structure on the hog data with corn price (Y3t) and corn supply (Y4t) driven by a

nonlinear process; for further discussions on nonlinear co-integration see Granger and Hallman

(1991) and Granger et al. (1997).
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5.2 Lynx Data

We consider as a second example a modern panel of eight annual lynx pelt series, labeled

as L15 to L22, which were collected over eight providences and regions in Canada from 1920 to

1994; see Stenseth et al. (1999) for a recent summary account of this data set, who reported

that the dynamics of the eight series can be classi�ed into three groups: Paci�c-maritime,

Continental and Atlantic-maritime. (See Tong (1990) for a review of the related lynx series

collected in the Mackenzie river region.) Recently, Li and Chan (2001) �tted the REduced-rank

Threshold Autoregressive (RETAR) model to the panel of lynx data and found broadly similar

classi�cation. However, the RETAR model assumes the underlying dynamics is piecewise linear,

while Stenseth et al. (1999) applied a panel of independent Threshold Autoregressive models to

analyze the common structure of the lynx data. Here, we consider the use of the SPARR model

for classifying the series without imposing strong prior assumption on the functional form.

Let Y consist of the (standardized) log lynx counts L15 to L22, in this order. As in Stenseth

et al. (1999) and Li and Chan (2001), we use the �rst two lags of Y as the explanatory variables,

i.e., Xt = (Yt�1; Yt�2)
0. Table 3 shows that the ranks r1 = 2 and r2 = 2 minimize the cross-

validatory percent of unexplained total variance, although r1 = 2 and r2 = 3 are a close second.

Hence, we tentatively identify the model as a SPARR model with r1 = r2 = 2, i.e.,

Yt = Cf(BXt) + �t;

= (c1; c2)

0
@ f1(b1Xt; b2Xt)

f2(b1Xt; b2Xt)

1
A+ �t (18)

where C = (c1; c2); B =

0
@ b1

b2

1
A ; f = (f1; f2)

0, r1=rank(C)=2, r2=rank(B)=2. With the ranks

set to be r1 = 2 and r2 = 2, the cross validation criterion de�ned by (2) chooses ĥ = 0:4. Below

are Ĉ before and after uncorrelated-component rotation, i.e., the rotated nonlinear principal-

component process f(f1(b1Xt; b2Xt); f2(b1Xt; b2Xt))
T g has uncorrelated components that are of

unit variance:
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2
66666666666666666666666666666666666666666664

0:792 0:305

(0:126) (0:109)

0:000 1:000

(NA) (NA)

0:590 �0:021
(0:140) (0:153)

1:004 �0:232
(0:176) (0:158)

0:939 �0:645
(0:182) (0:193)

0:990 �0:518
(0:200) (0:184)

1:000 0:000

(NA) (NA)

0:796 0:344

(0:123) (0:112)

3
77777777777777777777777777777777777777777775

;

2
66666666666666666666666666666666666666666664

0:0796 0:0357

(0:0139) (0:0127)

0:0208 0:0959

(NA) (NA)

0:0722 �0:00751
(0:0213) (0:0179)

0:0734 �0:0037
(0:0179) (0:0127)

0:0618 �0:0398
(0:0235) (0:0211)

0:0712 �0:0233
(0:0222) (0:0126)

0:100 0:0208

(NA) (NA)

0:0980 0:0178

(0:0219) (0:0133)

3
77777777777777777777777777777777777777777775

:

The Euclidean distance between any two rows of the rotated C measures the dissimilarity of the

two corresponding lynx series in terms of their dynamics. Applying the hierarchical clustering

(with the options of complete linkage and the Euclidean distance) to the rotated Ĉ yields (Figure

6(a)) three clusters, namely, L16 (Yukon) in the �rst cluster, L15 (British Columbia), L21

(Ontario), and L22 (Quebec) in the second cluster of maritime provinces that may be further

broken down into the Paci�c-maritime and the Atlantic-maritime clusters, and L17 (North

West Territories), L18 (Alberta), L19 (Saskatchewan) and L20 (Manitoba) in the third cluster

of continental provinces. This classi�cation of the eight lynx series is broadly similar to that

reported by Stenseth et al. (1999) and Li and Chan (2001).

The (unreported) time series plot of f1 resembles that of L21 (Ontario) while the time series

plot of f2 is similar to that of L16 (Yukon), as can also be inferred from Ĉ. The two series,

Ontario and Yukon, form an approximate bases for the other series, in the sense that the other

series are approximated by a weighted averages of these two series. To further understand the

shape of estimated function f = (f1; f2)
0, we plot in Figure 6(b) two 3-D plots of fi versus

U1 = b01Xt and U2 = b02Xt. The smoothed plots of the f 's are from the loess function �ts with
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the options of local polynomial of degree 1 and span= 0:75. The smooth plots suggest that f1 is

approximately a linear function and f2 resembles a piecewise linear function, \con�rming" the

nonlinearity of the lynx dynamics.

6 Conclusion

We have demonstrated that the SPARR model provides a 
exible approach for studying the

relationship of a high-dimensional regression model with multivariate response and explanatory

variables. In particular, in the case of panel time series data, the SPARRmodel may shed insights

on grouping the data into groups of common dynamical structure. Future research problems

include investigating the limiting properties of the estimators for nonstationary processes, and

establishing the consistency of the rank selection procedure in x2.

A Some Formulas Useful for Implementing Steps 1 to 3.

For simplicity, the iteration index k will be suppressed throughout this appendix.

Step 1: The objective function can be rewritten as (with Xt = x):

X
i6=t

jjY �

i � Ĉ(A0t A1t)

0
@ w

1=2
it

B̂(Xi � x)w
1=2
it

1
A jj2

where wit = Kh(B̂(Xi � x)). Let

Y � = (Y �
1 ; � � � ; Y �

�t; � � � ; Y �
T ) = (Y1w

1=2
1t ; � � � ; Ytw1=2

�tt ; � � � ; YTw1=2

T t )

X� =

0
@ w

1=2
1t : : : w

1=2
�tt : : : w

1=2

T t

B̂(X1 � x)w
1=2
1t : : : B̂(Xt � x)w

1=2
�tt : : : B̂(XT � x)w

1=2

T t

1
A

where the minus index signi�es the omission of the corresponding term. After some calculus

(see Reinsel and Velu, 1998, p. 157), it can be shown that

(Â0t; Â1t) = (ĈT Ĉ)�1ĈT �̂Y �X��̂�1X�X� (A.1)

where �̂Y �X� = (1=T )(Y �X�0); �̂X�X� = (1=T )(X�X�0).

Step 2: The objective function can be written as
P

t;i6=t jjY 2�
it � Ĉ2�

it BX
2�
it jj2; where Y 2�

it =

Yiw
1=2
it � ĈÂ0tw

1=2
it ; Ĉ2�

it = ĈÂ1t;X
2�
it = (Xi �Xt)w

1=2
it , and wit = Kh(B̂

(k�1)(Xi �Xt)). After

some matrix calculus (Schott, 1997), it can be shown that B̂ satis�es the normal equation:

X
it

[�C2�T
it Y 2�

it X
2�T
it + C2�T

it C2�
it BX

2�
it X

2�T
it ] = 0; (A.2)
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which has the solution

vec(B) =

"X
i

X2�
it X

2�T
it 
 C2�T

it C2�
it

#�1
�
"X

i

[vec(C2�T
it Y 2�

it X
2�T
it )]

#
: (A.3)

Step 3: The objective function can be rewritten as,
P

t;i6=t jjY 3�
it � C X3�

it jj2 where Y 3�
it =

Yiw
1=2
it ; X3�

it = (Â0t + Â1tB̂(Xi �Xt))w
1=2
it . Hence the solution Ĉ = Y 3�X3�T (X3�X3�T )�1.

B Proofs of Theorems 3.1 and 3.2

To save space, routine calculations are omitted from the proofs; see Li (2000) for details.

Proof of Theorem 3.1:

We will prove something stronger than Theorem 3.1, with B and C satisfying jjB�B0jj =
of(Thr2)�1=2+h2g and jjC�C0jj = of(Thr2)�1=2+h2g, where jj � jj denotes the Euclidean norm
of a matrix. Let cT = (Thr2)�1=2, u = Bx and Ui = BXi and

X�

i =

0
@ Ir1�

Ui�u
h

�

 Ir1

1
A ; A� =

0
@ c�1T fA0 � f0(u)g

c�1T hfvec(A1 � f 00(u))g

1
A :

Recall �fi = �fi(u) = f0(u) + f 00(u)(Ui � u).

Since

A0 +A1(U � u)

= A0 + vec(A1(U � u))

= (Ir1 ; (U � u)T 
 Ir1)

0
@ A0

vec(A1)

1
A

= cT (Ir1 ; (
U � u

h
)T 
 Ir1)

0
@ c�1T (A0 � f0(u))

c�1T h(vec(A1 � f 00(u)))

1
A+ f0(u) + f 00(u)(U � u)

= cTX
�T
i A� + �fi;

the objective function for estimating (f0(u); f
0
0(u)) can be written as

�
X
i

tr[(Yi � C(cTX
�T
i A� + �fi)(Yi � C(cTX

�T
i A� + �fi)

T ]Kh(B(Xi � x)): (B.1)

Note that the case i = t has negligible contribution to the above sum and hence included in the

criterion function. Consider the normalized function

lT (A
�) = �hr2

X
i

tr[(Yi �C(cTX
�T
i A� + �fi))(Yi � C(cTX

�T
i A� + �fi))

T

�(Yi � C �fi)(Yi � C �fi)
T ]Kh(B(Xi � x))
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which is maximized by Â�. By Taylor expansion and after some algebra, we have

lT (A
�) =

TX
i=1

hr2 [(cTX
�T
i A�)T q1( �fi; Yi) +

1

2
(cTX

�T
i A�)T q2( �fi; Yi)(cTX

�T
i A�)]Kh(Ui � u)

= A�TWT +
1

2
A�TDTA

�

where

q1(x; y) = � @

@x
tr[(y � Cx)(y � Cx)T ] = 2CT (y � Cx)

q2(x; y) =
@

@xT
q1(x; y) = �2CTC < 0

and

WT = hr2cT

TX
i=1

X�
i q1(

�fi; Yi)Kh(Ui � u); (B.2)

DT = hr2c2T

TX
i=1

X�
i q2(

�fi; Yi)X
�T
i Kh(Ui � u): (B.3)

It can be shown (Li, 2000) that

DT = �D + oP (1); (B.4)

where

D = D(u) = 2g0(u)

0
@ CT

0 C0 0

0 k2 
CT
0 C0

1
A : (B.5)

Therefore,

Â� = D�1WT + oP (1): (B.6)

Hence the asymptotic normality of Â� will follow from that of WT . Since WT is a sum of

i.i.d. random vectors, we need to compute the �rst two moments and check conditions for the

Central Limit Theorem. First, we consider the Taylor expansion of f0 = (fj0). It follows from

condition 1(iii) and the intermediate value theorem that

f0(U) = f0(u) + f 00(u)(U � u) +
1

2
(Ir1 
 (U � u)T )f 000 (�)(U � u):

where f 00j0(�) is an r2 � r2 matrix,

f 000 (�) � (f
00T
0;1 (�1); � � � ; f

00T
0;r1

(�r2))
T
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is an r1r2 � r2 matrix, and �'s are some "intermediate" points between u and U . Note that

when u coincides with U so that � = u, then

f 000 (u) � (f
00T
0;1 (u); � � � ; f

00T
0;r1

(u))T : (B.7)

This will be used in the derivation of EWT below. From the de�nition of WT , we have,

EWT = hr2cTE(

TX
i=1

X�

i q1(
�fi; Yi)Kh(Ui � u))

= c�1T EfX�2CT [C0f0(B0X)� C �f ]Kh(U � u)g

= c�1T EfX�2CTC[f0(B0X)� f0(BX) + f0(U)� f0(u)

�f 00(u)(U � u)]Kh(U � u) +O(jjC � C0jj)g

because �f = f0(u) + f 00(u)(U � u) and condition 1(iii)

= c�1T g0(u)

0
@ CT

0 C0k2;f0;h

0

1
A+O(c�1T jjB �B0jj) +O(c�1T jjC � C0jj)

+o(h2c�1T ): (B.8)

The variance of WT equals

Var(WT )

= hr2Var[X�q1( �f; Y )Kh(U � u)]

= 4g0(u)

0
@ �0C

T
0 �(u)C0 0

0 �2 
 CT
0 �(u)C0

1
A+O(h2 + jjC � C0jj+ jjB �B0jj)

+

0
@ O(jjC � C0jj+ o(1) o(1)

o(1) O(jjC �C0jj+ o(1)

1
A

� W + o(1);

where

W = 4g0(u)

0
@ �0C

T
0 �(u)C0 0

0 �2 
 CT
0 �(u)C0

1
A : (B.9)

Under Condition 1, it can be veri�ed that the central limit theorem (Hamilton, 1994, p.194)

holds for fWT g, i.e.,

WT �E(WT )
D�! N(0;W ) (B.10)
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Therefore,

D�1WT �D�1EWT
D�! N(0;D�1WD�1); (B.11)

or,

Â� �D�1EWT
D�! N(0;D�1WD�1); (B.12)

or,

c�1T

0
@ [A0 � f0(u)]

hfvec[A1 � f 00(u)]g

1
A� 1

2
c�1T

0
@ (CT

0 C0)
�1 0

0 (k2 
 CT
0 C0)

�1

1
A
0
@ CT

0 C0k2;f0;h

0

1
A

+ oP (c
�1
T h2) + oP (1)

D�! N(0; D�1WD�1):

This completes the proof of Theorem 3.1. �

Proof of Theorem 3.2:

We adopt the same notations as de�ned in the preceding proof.

Claim 1: (a) Assume B0 and C0 are known, we have

sup
u2D

jj
0
@ f̂(u)� f0(u)

hvec[f̂ 0(u)� f 00(u)]

1
A� cTD

�1WT jj

= OP (cTh
2 + cT

r
lnT

Thr2
): (B.13)

(b) For general B and C, we have

sup
u2D

jj
0
@ f̂(u;B�; C�)� f0(u)

hvec[f̂ 0(u;B�; C�)� f 00(u)]

1
A jj

= OP (h
2 + cT jjB� �B�

0 jj+ cT jjC� � C�0 jj+ cT

r
lnT

Thr2
): (B.14)

Proof: First of all, by using Theorem 2 of Masry (1996) and the fact that (Li, 2000) EDT =

�D + o(1), we have

DT (u) = EDT (u) +OP (

r
lnT

Thr2
)

= �D(u) +OP (h
2 + jjB� �B�

0 jj+ jjC� � C�0 jj+
r

lnT

Thr2
)

uniformly in u 2 D, where DT (u) and D(u) are de�ned in (B.4) and (B.5) except that we here

stress the dependence on u. There are two cases.
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(a) For known B0 and C0, we have

0 = WT +DTA
�

= WT �D[1 +OP (h
2 +

r
lnT

Thr2
)]A�

implying that

A� = D�1WT +OP [h
2 +

r
lnT

Thr2
)]: (B.15)

Multiplying cT on both sides of (B.15), we obtain the result in (B.13).

(b) For unknown B�
0 and C�0 , via (B.8) and Theorem 2 in Masry (1996), we have

cTWT = cT [(WT �EWT ) +EWT ]

= h2 + cT
p
lnT=(Thr2):

Consequently,

sup
u2D

jj
0
@ f̂(u;B�; C�)� f0(u)

hvec[f̂ 0(u;B�; C�)� f 00(u)]

1
A jj

= OP (h
2 + cT jjB� �B�

0 jj+ cT jjC� � C�0 jj+ cT
p
lnT=(Thr2)): �

Claim 2:

f̂(u0; B̂�; Ĉ�)� f0(u0)

= (CT
0 C0)

�1T
�1
P

iC
T
0 fYi � C0[f0(u0) + f 00(u0)(Ui � u0)]gKh(Ui � u0)

g(u0)

�f 00(u0)E(XT
2 
 Ir2 jU = u0)vec(B̂� �B�

0)

�(CT
0 C0)

�1CT
0

0
@ 0r1�r1(m�r1)

fT0 (u0)
 Im�r1

1
A vec(Ĉ� �C�0 )

+op(T
�1=2): (B.16)

Proof: Let a = f0(u0) and b = hvec[f 00(u0)]. The local linear estimates â = f̂0(u0; B̂�; Ĉ�) and

b̂ = hvec[f̂ 00(u0; B̂
�; Ĉ�)] solve the following equation

0 =
1

T

X
i

0
@ Ir1

( Ûi�u0
h

)
 Ir1

1
A ĈT (Yi � ĈfIr1 â+ [(

Ûi � u0

h
)T 
 Ir1 ]b̂g)Kh(Ûi � u0):

Via Taylor expansion, we obtain

0 =
1

T

X
i

0
@ Ir1

(Ui�u0
h

)
 Ir1

1
ACT

0 (Yi � C0fIr1a+ [(
Ui � u0

h
)T 
 Ir1 ]bg)Kh(Ui � u0)
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� 1

T

X
i

0
@ Ir1

(Ui�u0
h

)
 Ir1

1
ACT

0 C0[Ir1 ; (
Ui � u0

h
)T 
 Ir1 ]

0
@ â� a

b̂� b

1
AKh(Ui � u0)

� 1

T

X
i

0
@ Ir1

(Ui�u0
h

)
 Ir1

1
ACT

0 C0f
0

0(u0)(X
T
2i 
 Ir2)vec(B̂

� �B�

0)Kh(Ui � u0)

+
1

T

X
i

0
@ Ir1

(Ui�u0
h

)
 Ir1

1
ACT

0 (Yi � C0fIr1a+ [(
Ui � u0

h
)T 
 Ir1 ]b)g)K

0T
h (Ui � u0)

�[(X2i � x0)
T 
 Ir2 ]vec(B̂

� �B�

0)

� 1

T

X
i

0
@ Ir1

(Ui�u0
h

)
 Ir1

1
ACT

0

0
@ 0r1�r1(m�r1)

fT0 (u0)
 Im�r1

1
Avec(Ĉ� � C�0 )Kh(Ui � u0)

+
1

T

X
i

0
@ Ir1

(Ui�u0
h

)
 Ir1

1
A [(Yi � C0fIr1a+ [(

Ui � u0

h
)T 
 Ir1 ]bg)T 
 Ir1 ]

�Kh(Ui � u0)vec(Ĉ�
T � C�T0 )

+Op(
1

T
) +OP (

h2p
T
+
cT jjB̂� �B�

0 jjp
T

+
cT jjĈ� � C�0 jjp

T
+
cT
p
lnT=(Thr2)p

T
);

where the �rst remainder term comes from the second order expansion of the parametric

part in the Taylor expansion, while the second remainder term comes from the cross product

of the parametric part and nonparametric part of the second order expansion in the Taylor

expansion. The sum of remainder terms is oP (1=
p
T ) under the conditions h ! 0; Thr2 ! 1

and lnT=(Thr2) ! 0. Moreover, it follows from Lemma 1 in Appendix C with p = 0 and K 0

h

replacing Kh that (recall Xt is partitioned as

0
@ X1t

X2t

1
A with X1t being r2 dimensional.)

T�1
X
t

(Yt � C0a)K
0

h(Ut � u0)[(X2t � x0)
T 
 Ir2 ]vec(B̂

� �B�

0)

= OP (h=
p
T +

p
lnT=(T

p
hr2)) = oP (1=

p
T ): (B.17)

Similarly, we have

T�1
X
t

[(Yt � C0a)
T 
 Ir1 ]Kh(Ui � u0)vec(Ĉ�

T � C�T0 )

= OP (h=
p
T +

p
lnT=(T

p
hr2)) = oP (1=

p
T )
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under the conditions that h! 0 and lnT=(Thr2)! 0. Hence,

0 = T�1
X
i

CT
0 fYi �C0[f0(u0) + f 00(u0)(Ui � u0)]gKh(Ui � u0)� g(u0)C

T
0 C0(â� a0)

� g(u0)C
T
0 C0f

0
0(u0)E[X

T
2 
 Ir2 jU = u0]vec(B̂� �B�)

� g(u0)C
T
0

0
@ 0r1�r1(m�r1)

fT0 (u0)
 Im�r1

1
A vec(Ĉ� � C�0) + op(T

�1=2)

Because â = f̂(u0;h; B̂�; Ĉ�) and a0 = f0(u0), the above equation implies that

f̂(u0;h; B̂�; Ĉ�)� f0(u0)

= (CT
0 C0)

�1T
�1
P

iC
T
0 fYi � C0[f0(u0) + f 00(u0)(Ui � u0)]gKh(Ui � u0)

g(u0)

�f 00(u0)E[XT
2 
 Ir2 jU = u0]vec(B̂� �B�

0)

�(CT
0 C0)

�1CT
0

0
@ 0r1�r1(m�r1)

fT0 (u0)
 Im�r1

1
A vec(Ĉ� �C�0 ) + op(T

�1=2):

This completes the proof of Claim 2. �

Claim 3:

f̂(B̂Xi; B̂�; Ĉ�)� f0(B0Xi)

= f 00(B0Xi)(X
T
2i 
 Ir2)vec(B̂

� �B�
0) + f̂(B0Xi; B̂�; Ĉ�)� f0(B0Xi)

+oP (T
�1=2): (B.18)

Proof: After some algebra, it can be shown that

f̂(B̂Xi; B̂�; Ĉ�)� f0(B0Xi)

= f̂(B̂Xi; B̂�; Ĉ�)� f̂(B0Xi; B̂�; Ĉ�) + f̂(B0Xi; B̂�; Ĉ�)� f0(B0Xi)

= f̂ 0(B0Xi; B̂�; Ĉ�)(B̂� �B�
0)Xi + f̂(B0Xi; B̂�; Ĉ�)� f0(B0Xi) + op(T
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T
2i 
 Ir2)vec(B̂

� �B�

0) + f̂(B0Xi; B̂�; Ĉ�)� f0(B0Xi) + oP (T
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�

.

To prove Theorem 3.2, recall that (B̂�; Ĉ�) maximizes the objective function de�ned by

�
X
t

X
i6=t

jjYi � C[f̂(BXt;B
�; C�) + f̂ 0(BXt;B

�; C�)B(Xi �Xt)]jj2Kh[B(Xi �Xt)]:
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Let

�̂i;t =

0
@ (X2t 
 Ir2)f̂

0T (B̂Xt; B̂�; Ĉ�)ĈT + [(X2i �X2t)
 f̂
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Taking the �rst derivative of the objective function with respect to (vec(B�); vec(C�)), and

via Taylor expansion we have
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T 3

X
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It follows from Claims 1-3 that
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+
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A vec(Ĉ� �C�0 )

�Kh[B0(Xi �Xt)]

+oP (1): (B.20)

We split the sum in(B.20) into two sums:

X
t

X
i6=t

=
X
t

X
i

�
X
t

X
i=t

= J1 � J2:
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et al. (1995), it can be shown that
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5 vec(Ĉ� �C�0 )Kh(0) + oP (1):
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from which (16) can be readily derived. �

C Lemma 1

Let fYt;X tg be a bivariate time series, and  a measurable function. The following lemma

essentially follows from Theorem 5 and Corollary 3 in Masry (1996); hence the proof is omitted.
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See Masry (1996) for unde�ned notations below; in particular, d and n de�ned in Masry (1996)

correspond to r2 and T de�ned in this paper.

Lemma 1: Under the conditions as stated in Theorem 5 and Corollary 3 in Masry (1996),

which follows from Conditions 1-3, it holds that

1

n� d+ 1

n�dX
i=0

 (Yd+i)Kh(X i � x)

=
X

0�jjj�p+1

1

j!
(Djm)(x)E

"�
Xi � x

h

�j

Kh(X i � x)

#
+ o(hp+1) +O(

r
lnn

nhd
):

uniformly in x 2 D.
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Table 1: Frequency (out of 100 replicates) for selecting ranks r1=rank(C) and r2=rank(B) of

the SPARR model from the simulated data. T is the sample size.

T=100 T=200 T=400 T=800

r1/r2 1 2 3 1 2 3 1 2 3 1 2 3

1 0 0 0 0 0 0 0 0 0 0 0 0

2 0 83 2 0 85 1 0 81 2 0 92 0

3 0 31 0 0 12 2 0 17 0 0 8 0

Table 2: Objective function for selecting r1=rank(C) and r2=rank(B) of the SPARR model for

the U.S. hog data. The objective function is de�ned by (5). The entry ER2(ER3) denotes that

the estimated B(C) matrix can not be normalized.

r1/r2 1 2 3 4

1 .955 .658 ER2 .348

2 .257 .463 .560 .463

3 ER3 .449 ER2 ER2

4 .322 .681 ER2 ER3

5 .583 .705 .625 ER2

Table 3: Objective function for selecting r1=rank(C) and r2=rank(B) of the SPARR model for

the lynx data. The objective function is de�ned by (5).

r1/r2 1 2 3 4 5

1 .477 .490 .520 .652 .520

2 .461 .375 .376 .641 .654

3 .736 .525 .545 .429 .435

4 .671 .616 .419 .568 .472
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Figure 2: Lagged regression plots for the U.S. hog data
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Figure 2: (continued)
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Figure 3: Within-sample 1-step ahead predictions from the SPARR model of the U.S. hog data,

with r1 = 2 and r2 = 1. Observations are drawn as open circles, and predicted values as solid

circles.
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Figure 4: Residual plots for the U.S. hog data from the SPARR model with r1 = 2; r2 = 1.
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Figure 5: The �tted SPARR model for the US hog data, with r1 = 2 and r2 = 1.
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(a) Cluster analysis of the lynx dynamics.
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(b) Smoothed plots and 3-D scatter plots of f̂1 and f̂2.

Figure 6: The �tted SPARR model for the Lynx data, with r1 = 2 and r2 = 2.39


